Earth Curvature Calculator

by Eldøy Projects

Accurately calculate the curvature you are supposed to see on the ball Earth.
Distance: 20 v Miles \quad Calculate

Distance	Curvature
1 mile	0.00013 miles $=0.67$ feet
2 miles	0.00051 miles $=2.67$ feet
5 miles	0.00316 miles $=16.67$ feet
10 miles	0.01263 miles $=66.69$ feet
20 miles	0.05052 miles $=266.75$ feet
50 miles	0.31575 miles $=1667.17$ feet
100 miles	1.26296 miles $=6668.41$ feet
200 miles	5.05102 miles $=26669.37$ feet
500 miles	31.5336 miles $=166497.53$ feet
1000 miles	125.632 miles $=663337.65$ feet

Explanation:

The Earth's radius (r) is 6371 km or 3959 miles, based on numbers from Wikipedia, which gives a circumference (c) of $\mathrm{c}=2 * \pi * r=40030 \mathrm{~km}$

We wish to find the height (h) which is the drop in curvature over the distance (d)

Using the circumference we find that 1 kilometer has the angle
$360^{\circ} / 40030 \mathrm{~km}=0.009^{\circ}$. The angle (a) is then $\mathrm{a}=0.009^{\circ}$ * distance

The derived formula $h=r *(1-\cos a)$ is accurate for any distance (d)

Source code

Note: Using the formula 8 times the distance in miles squared is not accurate for long distances but is fine for practical use.

Made by Eldøy Projects, Oslo, Norway

