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Abstract

The fascination and fear of snakes dates back to time immemorial, with the first

scientific treatise on snakebite envenoming, the Brooklyn Medical Papyrus, dating

from ancient Egypt. Owing to their lethality, snakes have often been associated with

images of perfidy, treachery and death. However, snakes did not always have such

negative connotations. The curative capacity of venom has been known since

antiquity, also making the snake a symbol of pharmacy and medicine. Today, there is

renewed interest in pursuing snake-venom-based therapies. This Review focuses on

the chemistry of snake venom and the potential for venom to be exploited for

medicinal purposes in the development of drugs. The mixture of toxins that

constitute snake venom is examined, focusing on the molecular structure, chemical

reactivity and target recognition of the most bioactive toxins, from which bioactive

drugs might be developed. The design and working mechanisms of snake-venom-

derived drugs are illustrated, and the strategies by which toxins are transformed into
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therapeutics are analysed. Finally, the challenges in realizing the immense curative

potential of snake venom are discussed, and chemical strategies by which a plethora

of new drugs could be derived from snake venom are proposed.

Introduction

More than 220,000 species, or approximately 15% of all animal diversity on earth, are

venomous . Venom endows predators with a chemical weapon far more potent than

physical force. Animal venoms are complex and sophisticated bioactive cocktails, the

main components of which are proteins and peptides . The best characterized animal

venoms are probably those derived from cone snails, spiders, scorpions and snakes.

The composition of the venoms of the first three is dominated by short (3–9-kDa)

disulfide-rich peptides that contain the inhibitor cysteine knot (ICK) motif, although

heavier proteins, including enzymes, are also present. ICK peptides are structurally

very stable and mainly target the nervous system, acting primarily on membrane

channels or neuronal receptors . The venom of a spider or cone snail might

contain thousands of different peptides, whereas a scorpion’s venom might contain

several hundred . The large number of spider species (possibly >100,000) further
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increases venom diversity.

Snake venoms typically consist of a mixture of 20 to >100 components, of which the

majority (>90%) are peptides and proteins , with the dominant bioactivities including

neurotoxicity, haemotoxicity and cytotoxicity, depending on the snake species.

Venom composition varies widely between species and even within the same

species . Other factors, such as environmental conditions, age, sex or

type of prey available, can also affect venom composition .

This diversity is a double-edged sword. The only efficient treatment for a snakebite is

the administration of the specific antivenom, but the variability in venom

composition limits the availability and the upscaling of the production of

antivenoms . There are an estimated 2.7 million envenomings each year, which

result in >100,000 deaths and leave >400,000 victims with severe and permanent

sequelae . However, the compositional diversity is a rich playground for

medicinal chemists, providing a collection of highly specific and bioactive

compounds that offer many paths towards developing new therapeutic

drugs .

In this Review, we first examine the chemical composition of snake venom, analysing

the venoms of >200 snake species. We then discuss the mechanistic details of the

chemistry of the principal enzymatic venom toxins. Next, we review the

development, structure and mode of action of approved snake-venom-based drugs as

well as those of compounds in clinical and preclinical testing. Finally, we conclude

with an analysis of the vast therapeutic potential of snake venom, pointing out

chemical strategies for the transformation of venom into a repertoire of new drugs.

The chemical composition of snake venom

From the middle of the twentieth century, researchers observed the richness in the
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constituents of venom and began to isolate and analyse the structures and activities

of its toxins, as many of them have the potential to be turned into medicines. Most

snake venom toxins belong to one of ~30 families , although the venom of a given

snake species can contain hundreds of bioactive compounds . In the snake venoms

of known composition, some protein families have many hundreds of isoforms . For

example, the UniProt database  contains almost 3,000 isoforms of snake toxins

within the reviewed entries. Although there is usually extensive functional

redundancy among isoforms of the same protein, there are cases in which different

isoforms have different biological activities, which makes their characterization

relevant and essential .

Advances in transcriptomics and proteomics, enabled by advances in mass

spectrometry, reverse-phase high-performance liquid chromatography and next-

generation sequencing , have enabled scientists to determine the

composition of the venom of hundreds of snake species, giving rise to a field named

‘venomics’  and unveiling the chemical richness of venomous snakes (see the Reptile

Database).

We have reviewed the venomics studies conducted in the past 15 years (2007–2021)

for the two most relevant families of venomous snake: Elapidae (elapids) and

Viperidae (viperids, commonly referred to as vipers, and further divided into the true

viper and pit viper subfamilies). Elapids and vipers include almost all medically

important snakes, although there are also some examples in the Colubridae

(colubrids) family. Figure 1 depicts the averaged venom composition of 76 species

and subspecies of the ~400 known elapids and 117 of the ~400 known vipers. Only

protein families with an average abundance of >1% of the total venom proteome were

considered here. However, because evolutionary and ecological factors can lead to

considerable interpopulation and intrapopulation variation in the chemical

composition of venom, with numerous exceptions and dichotomies adding to the

molecular richness at all taxonomic levels, we also analysed the venom composition
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of individual snake genera (only the most well-studied were considered), which

illustrates the venom diversity. Supplementary Table 1 further illustrates the chemical

richness of snake venom by providing the detailed venom composition for each

species and the respective bibliographic sources.

Fig. 1: Composition of the venom of snakes from the Elapidae and Viperidae

families.
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The large charts show the averaged composition of the venom of snake species from the

Elapidae (elapids) or Viperidae (viperids) families. Each entry in the charts corresponds to a

protein family, in which we group tens to hundreds of isoforms. Only protein families with an

average abundance of >1% of the total venom proteome are represented, except for the

SVSPs in elapids, which are included for comparison with the viperids, and defensins, which

although seldom present, can be abundant in the venom of certain species. The distribution

of the proportion of the most abundant protein families is shown in Supplementary Fig. 1.

Data are from the proteomic studies of the past 15 years; 143 entries for 2007–2017 are

from Isbister and Tasoulis’s database of snake venom proteomes ; we assembled the

additional entries for 2017–2021 from the literature. The Atractaspididae and Colubridae

snake families are not included in the study because most are non-venomous or their

venoms are weak, not medically important and poorly studied (for venomics studies on

colubrids see ref. ). Each species contributes with the same weight to the average;

subspecies or species from different locations were averaged within the entry for the

species. The entry ‘Other’ corresponds to unidentified components or components with an

average abundance of <1%. The smaller charts decompose the snake venom composition at

the genus level, which reveals the compositional diversity. Only the most well-studied genera

are included, which comprise almost all the medically relevant snakes. Supplementary Table

1 details the composition of the venom of each species included in the study together with

the relevant reference. 3FTx, three-finger toxin; CRiSP, cysteine-rich secretory protein;

CTL/SNACLEC, C-type lectin and C-type lectin-like protein; DEF, defensin; DIS, disintegrin;

KSPI, Kunitz-type serine protease inhibitor; LAAO, L-amino acid oxidase; NP, natriuretic

peptide; PLA2, phospholipase A2; SVMP, snake venom metalloproteinase; SVSP, snake

venom serine protease.

Some toxins act synergistically, and the combination and proportion of each toxin

determine the pathophysiology of snakebite envenomation . The difference in the

chemical composition of venom from elapids and vipers (Fig. 1) leads to different

clinical manifestations. Envenoming by elapids mostly induces neurotoxic, cytotoxic
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and cardiotoxic manifestations, whereas envenoming by vipers typically induces

myotoxicity and haemotoxicity .

Elapid venoms mainly comprise peptides and proteins from seven families; secreted

phospholipases A2 (PLA2s)  and three-finger toxins (3FTxs)  are

often major constituents and have a dominant role in the action of the venom,

although there are many exceptions and considerable diversity at the species level

(Supplementary Table 1). For example, the venom of snakes from the Dendroaspis

genus (mambas) and many Australian snakes show notable exceptions in the

composition and action of these toxins. The former lack PLA2 and the latter have a

very low content (<6%) of 3FTx. Interestingly, all these snakes have highly potent

venoms.

Other toxins — namely snake venom metalloproteinases (SVMPs) , snake

venom serine proteases (SVSPs)  and L-amino acid oxidases (LAAOs)

— represent an average of 6% of elapid venom. Kunitz-type peptides  are a family of

serine protease inhibitors with the Kunitz domain fold; these peptides constitute an

average of ~5% of elapid venom and are potent and selective K -channel blockers.

Kunitz-type peptides are particularly prevalent in mambas. The remaining protein

families that have been identified appear in smaller amounts.

Viperid venoms mostly include toxins from nine protein families. Again, there are

many exceptions and substantial diversity at the individual species and subspecies

level (Supplementary Table 1). In most species, the PLA2 (refs ),

SVMP  and SVSP  toxins are dominant, representing an average

of ~70% of the whole venom proteome. Most viperid PLA2s are myotoxic, despite

sharing extensive sequence identity with the PLA2s of elapids, many of which are

neurotoxic. Other toxins that are present in smaller proportions (4–7%) are

LAAOs , C-type lectins and C-type lectin-like proteins , and natriuretic

peptides .
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This analysis shows only part of the complexity of snake venom, as hundreds of

additional proteins, enzymes and peptides can be present in the venom of each

species.

Interspecies variation

Snake venom shows both considerable intraspecies (Box 1) and interspecies variation.

The fraction of PLA2s and 3FTx in the venom of each elapid species varies widely

(Supplementary Fig. 1), with the percentage of each ranging from almost 0% to nearly

100%. Interestingly, in most species, a lower fraction of PLA2 is compensated by a

higher fraction of 3FTx, and vice versa. Thus, together, they represent, on average,

>80% of the total venom proteome in most elapid species. Kunitz-type peptides

generally represent <10%, with a more even distribution across species.

An exception is the black mamba (Dendroaspis polylepis) — the most feared snake of

the African continent. It is very aggressive when threatened, extremely fast,

intelligent and has highly toxic and fast-acting venom. Despite this, few fatalities are

attributed to this snake, mainly because its habitat is generally far from densely

inhabited areas. Black mamba venom primarily consists of Kunitz-type peptides and

3FTxs (61% and 31%, respectively) and lacks PLA2s . Thus, its venom composition is

highly atypical, similar to almost no other snake’s venom, except for that of the

closely related eastern green mamba (Dendroaspis angusticeps), which is also devoid

of PLA2s and rich in Kunitz-type peptides and 3FTxs, but with the opposite

proportions (16% and 69%, respectively). These two mambas may represent the most

outstanding examples of the chemical diversity of elapid venoms.

The composition of viperid venom varies widely across genera (Fig. 1) and species

(Supplementary Fig. 1 and Supplementary Table 1). The PLA2, SVSP and SVMP

enzymatic families represent an average of ~70% of the viperid proteome. The

proportion of PLA2 ranges from almost zero to >90%, with the distribution peaking at

~10% (Supplementary Fig. 1). The SVMP ratio also has a broad distribution, with a peak
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at ~40%. SVSPs generally constitute <20%, although there are species, such as the

Okinawa pit viper (Ovophis okinavensis), whose venom consists almost entirely of

SVSPs . Although present in low quantities on average, C-type lectins and C-type

lectin-like proteins, defensins or natriuretic peptides can represent >37% of the

viperid proteome in specific species.

Defensins are small proteins ubiquitous across life that function as host defence

peptides and have antimicrobial and/or immune signalling activities. The defensins

found in viperid venom act on the Na  and K  channels of plasma membranes,

including that of muscle cells (the sarcolemma), and accumulate in the lysosomes,

causing analgesic, neurotoxic, myotoxic and cytotoxic effects . The accumulation

in the lysosomes is an unusual mechanism of cytotoxicity among snake toxins.

Furthermore, the structures of defensins are unlike any other channel-binding toxins.

Although they can be more abundant in specific venoms, defensins are typically rare,

and constitute on average 1% of venom.

In conclusion, our analysis confirms and further reinforces the understanding of the

incredible diversity of snake venom. This diversity of highly bioactive proteins and

peptides, which recognize essential biological targets with exquisite specificity and

affinity, constitutes a unique pharmacological database for drug discovery.

Box 1 Intraspecies variation of snake venom

Venom composition changes within a species owing to age, gender, prey

availability, diet and geographic location, among other factors. The venom of

Chemistry of the major enzymatic toxins

Since the first identification and characterization of the structure of a snake venom

toxin, crotoxin from Crotalus durissus terrificus in 1938 (ref. ), there has been intense
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research aimed at elucidating the structure, reactivity and target of venom toxins, in

order to understand their function and determine their molecular determinants of

recognition and therapeutic potential. Table 1 summarizes the information currently

available for several prominent toxin families and provides suggestions for further

reading. In this section, we discuss the reaction chemistry of the three principal

enzymatic toxin families: PLA2s, SVMPs and SVSPs. Some of the other abundant

toxins without catalytic activity are discussed in the next section.

Table 1 Characteristics of the main families of snake venom toxins

Secreted phospholipases A2

PLA2s exist as active enzymes and as inactive PLA2-like proteins in snake venom. PLA2

enzymes catalyse the hydrolysis of the sn-2 ester bond of cell-membrane

phospholipids and are classified into 14 groups, from which the groups IA and IIA are

present in elapid and viperid venoms . The enzymes in these groups have a

molecular mass of 13–19 kDa, contain 5–8 disulfide bridges and form dimers in

aqueous solution . In cell membranes, PLA2s dissociate and bind as monomers ,

and show an affinity for membrane regions in which at least 15% of the phospholipids

are negatively charged  (Fig. 2a). PLA2s can also be divided into acidic and basic

isoforms, according to the isoelectric point (pI), with the basic isoforms having a

higher membrane affinity and thus higher toxicity .

Fig. 2: The three main types of PLA2 bound to their targets.
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a | Myotoxin I (MT-I), a strongly myotoxic phospholipase A2 (PLA2) from the venom of a

terciopelo viper (Bothrops asper), attached to the sarcolemma. MT-I (PDB ID: 5TFV)  is

shown with a phospholipid substrate bound to the active centre. In the phospholipid, oxygen

is red, phosphorus is orange, nitrogen is blue, carbon is grey and hydrogen is white; the

enzyme is shown in light red, and the Ca  ion is shown in light green. The residues that form

the protein–membrane interface and the PLA2–membrane binding geometry were identified

through mutagenesis, fluorescence and X-ray crystallography studies . b | The PLA2

homologue myotoxin II (MT-II), also from terciopelo venom (PDB ID: 1Y4L) , bound to the

sarcolemma. The C-terminal region destabilizes and permeabilizes the membrane . The

protein is shown in light green, and the C-terminal KKYRYYLKPLCKK sequence is shown in

pink. c | β-Bungarotoxin (PDB ID: 1 BUN)  from the Taiwan banded krait (Bungarus

multicinctus) bound to a neuronal membrane. The toxin travels silently through the victim’s

body until its Kunitz (KUN) domain (green) recognizes and binds a presynaptic voltage-gated

K  channel (violet, PDB ID:6PBX) with high specificity, trapping the PLA2 domain (light blue)

at the neuronal membrane, where its active site, otherwise occluded, opens and starts

degrading the adjacent phospholipids (bound phospholipid coloured by element) .

The catalytic mechanism of PLA2s is still unclear at the atomic level. Nevertheless, it is

a two-stage process, with the first corresponding to the binding of the PLA2 to the

membrane and the second to the chemical reaction. The first stage determines the

enzyme–target specificity, whereas both stages determine the enzyme efficiency .
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The catalytic activity of PLA2s depends on Ca , which stabilizes the tetrahedral

transition state of the reaction . An essential aspartate residue (Asp49)

coordinates the Ca  cofactor, the mutation of which renders the enzyme inactive. As

metadata analyses have shown, it is unusual for Ca  cofactors to participate in the

catalytic cycle . Other divalent metal ions that are larger or smaller, or harder or

softer, than Ca  lead to a notable drop in activity  for a reason not yet understood.

In the most-accepted mechanism , the active site histidine residue (His48) abstracts

a proton from a water molecule bound to the Ca  ion, and the resulting hydroxy

group attacks the sn-2 ester bond. A chain of water molecules probably mediates the

proton transfer to His48.

In a twist of evolution, viper PLA2s split between enzymes and catalytically inactive

proteins, known as PLA2 homologues. The latter lack the Ca  cofactor owing to

substitution of the Asp49 residue by lysine or, less commonly, by serine, arginine,

glutamine or asparagine. The (Lys49) PLA2 homologues are highly myotoxic, despite

having no enzymatic activity. A sequence of ~12 positively charged and hydrophobic

residues at the C-terminal region, with positive ends and a mixed positive and

hydrophobic core (such as the KKYRYYLKPLCKK sequence in MT-II from the venom of

terciopelo (Bothrops asper)), is believed to penetrate and destabilize the sarcolemma

(Fig. 2b), and thus promote an influx of Ca  ions, which starts a chain of harmful

events that leads to myotoxicity . Further investigation is needed to achieve an

atomic-level understanding of this effect. This stretch of residues alone often has

similar bioactivity to that of the whole protein and is intensively investigated as a

model to construct antimicrobial peptides .

Some neurotoxic PLA2s have even more refined molecular mechanisms of action that

serve as lessons for drug delivery. An example is β-bungarotoxin from the venom of

the Taiwan banded krait (Bungarus multicinctus), which comprises a PLA2–Kunitz-

type peptide heterodimer. The toxin travels silently through the victim’s body,

avoiding off-target membranes owing to the partially occluded PLA2 active site and
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its low membrane affinity. When β-bungarotoxin reaches the pre-synaptic region of

the neuromuscular junction, the Kunitz-type peptide recognizes and binds a specific

K  channel, trapping the toxin at this location. This event exerts a first neurotoxic

action. The PLA2 monomer, once firmly anchored at the membrane, opens the active

site and initiates hydrolysis of the membrane phospholipids, near the K  channel,

further enhancing the neurotoxic effect  (Fig. 2c).

In summary, PLA2 enzymes and their inactive homologues share extensive sequence

and structural similarity, and both induce myotoxicity but through surprisingly

diverse molecular mechanisms. The great diversity of PLA2 isoforms translates into a

surprising variety of biological activities, underlying molecular machinery and

recognition targets, and, consequently, a variety of drug discovery opportunities .

Snake venom metalloproteinases

SVMPs are mostly haemorrhagic and are classified into three groups (P-I to P-III)

according to the number of domains (1–3), with further division into subgroups .

P-III SVMPs are the largest, more ancient and most complex enzymes, from which the

P-II and P-I enzymes evolved through domain loss. Elapid venoms contain only P-III

SVMPs. By contrast, viperid venoms contain SVMPs from each of the three groups,

with SVMPs being a prominent toxin, and often the most abundant one (Fig. 1).

P-I SVMPs comprise the catalytic domain only, which catalyses the hydrolysis of a vast

array of physiologically relevant enzymes and structural proteins. This domain is

common to the three SVMP groups. Its hydrolytic targets include collagen IV,

fibrinogen and coagulation factors, with extensive haemorrhagic consequences .

Hydrolysis of collagen IV weakens capillary walls, which causes them to collapse

under otherwise normal haemodynamic pressure . Continuous hydrolysis of

fibrinogen in vivo leads to weak, inefficient fibrin clots and hypofibrinogenaemia, and

the hydrolysis of blood coagulation factors deregulates blood clotting .
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P-II SVMPs have an additional disintegrin domain that inhibits platelet aggregation

through specific binding to the blood platelet α β  integrin — a vital protein that

triggers fibrinogen binding and platelet aggregation . This action reinforces the

haemorrhagic effect of collagen IV hydrolysis.

P-III SVMPs (Fig. 3) have a catalytic domain, a disintegrin-like domain with a collagen-

binding three-amino acid Glu–Cys–Asp (ECD) motif (instead of the typical P-II Arg–

Gly–Asp (RGD) motif) and a cysteine-rich domain. The prominent role of the latter is

substrate recognition and binding. Nevertheless, the catalytic domain is also involved

in substrate recognition through an interesting conformational selection mechanism

(Box 2). In some isoforms, a C-type lectin-like domain is also present .

Fig. 3: Structures of SVMPs and their substrates.

a | The structure of the factor X activating enzyme RVV-X (PDB ID: 2E3X)  from the eastern

Russell’s viper (Daboia siamensis). RVV-X is a P-III snake venom metalloproteinase (SVMP)

isoform that is ubiquitous in species from the Indian subcontinent . RVV-X activates blood

coagulation factor X by hydrolysing the Arg194–Ile195 position with such high specificity
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that it is used as a diagnostic tool for haematologic disorders . The catalytic

domain (MET) is coloured yellow, the disintegrin (DIS) domain is coloured green and the

cysteine-rich domain (CR) is coloured pink. RVV-X has an additional C-type lectin and C-type

lectin-like protein (CLT/SNACLEC) domain, which is shown in blue. The inset shows the Zn

cofactor with its coordination shell and the peptidomimetic inhibitor GM6001, whose two

coordinated oxygen atoms mimic the positions of the water molecule and the carbonyl of the

substrate (superimposed on top of GM6001 with a translucent ball and stick representation).

b | Illustrative scheme of daborhagin , a highly haemorrhagic SVMP from Russell’s viper

venom, bound to collagen IV at the basement membrane of capillaries. The colour scheme

of the enzyme domains is the same as that of RVV-X in part a. A collagen IV fibre is shown in

light green, with a tropocollagen unit emphasized in dark green and drawn in a cartoon and

tube representation. The hydrolysis of collagen IV weakens the mechanical stability of the

capillary wall, which breaks down under regular haemodynamic forces, leading to massive

haemorrhage. Daborhagin was modelled with the active site facing collagen IV.

The reaction mechanism of SVMPs is not fully clarified despite a wealth of X-ray

structures . The mechanism is proposed  to begin with the coordination of the

scissile carbonyl of the substrate to the Zn  ion in the active site, such that the

carbonyl group is held at an attacking distance from a water molecule also bound to

the Zn  centre. Following deprotonation of the water molecule by a conserved

glutamate residue (Glu146), the resulting hydroxide ion attacks the carbonyl carbon

to form a Zn -bound gem-diolate. Finally, the neutral Glu146 protonates the peptide

amine, leading to cleavage of the peptide bond.

Box 2 Substrate recognition by snake venom metalloproteinases

Despite extensive sequence identity, only some snake venom

metalloproteinases (SVMPs) bind collagen IV and have haemorrhagic activity.

Snake venom serine proteases

26,93,94,229

2+

230

81,82,83 82

2+

2+

2+

Show more

Download PDF

https://www.nature.com/articles/s41570-022-00393-7#ref-CR26
https://www.nature.com/articles/s41570-022-00393-7#ref-CR26
https://www.nature.com/articles/s41570-022-00393-7#ref-CR93
https://www.nature.com/articles/s41570-022-00393-7#ref-CR93
https://www.nature.com/articles/s41570-022-00393-7#ref-CR94
https://www.nature.com/articles/s41570-022-00393-7#ref-CR94
https://www.nature.com/articles/s41570-022-00393-7#ref-CR229
https://www.nature.com/articles/s41570-022-00393-7#ref-CR229
https://www.nature.com/articles/s41570-022-00393-7#ref-CR230
https://www.nature.com/articles/s41570-022-00393-7#ref-CR230
https://www.nature.com/articles/s41570-022-00393-7#ref-CR81
https://www.nature.com/articles/s41570-022-00393-7#ref-CR81
https://www.nature.com/articles/s41570-022-00393-7#ref-CR82
https://www.nature.com/articles/s41570-022-00393-7#ref-CR82
https://www.nature.com/articles/s41570-022-00393-7#ref-CR83
https://www.nature.com/articles/s41570-022-00393-7#ref-CR83
https://www.nature.com/articles/s41570-022-00393-7#ref-CR82
https://www.nature.com/articles/s41570-022-00393-7#ref-CR82
https://www.nature.com/articles/s41570-022-00393-7.pdf?pdf=button%20sticky
https://www.nature.com/articles/s41570-022-00393-7.pdf?pdf=button%20sticky
https://www.nature.com/articles/s41570-022-00393-7.pdf?pdf=button%20sticky
https://www.nature.com/articles/s41570-022-00393-7.pdf?pdf=button%20sticky
https://www.nature.com/articles/s41570-022-00393-7.pdf?pdf=button%20sticky


SVSPs are primarily haemotoxic and interfere with blood coagulation, blood

fibrinogen levels, blood pressure and platelet aggregation  (Fig. 4a,b),

although there is one known example of an SVSP with K -channel blocking activity

(Fig. 4c). The resistance of SVSPs to endogenous serine protease inhibitors endows

them with their toxic effects. Many of the activities of SVSPs mimic those of the

enzyme thrombin, which is a vital component of the blood coagulation cascade. Each

SVSP exhibits one or more of the activities of thrombin and sometimes has

bioactivities that thrombin does not. But no SVSP possesses all the bioactivities of

thrombin , which makes them toxic and, in contrast to thrombin, SVSPs deregulate

homeostasis . SVSPs that share some of the fibrinogenolytic activities of thrombin

have been named thrombin-like enzymes.

Fig. 4: Structure of SVSPs and their substrates.
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a | The factor V activating enzyme from Russell’s viper venom (RVV-V; PDB ID: 3S9C), which

is a snake venom serine protease (SVSP) with specificity for blood coagulation factor V.

RVV-V is depicted in a complex with the 14-residue terminal fragment of factor Va (residues

1533–1546), called FV14. RVV-V releases the last 61 residues of factor V by hydrolysing its

Arg1545–Ser1546 bond, generating procoagulant factor Va and mimicking one of the

physiological roles of thrombin . The inset shows the active site and factor V hydrolysis

product. RVV-V recognizes factor V through a selective induced-fit mechanism that opens an

otherwise closed subpocket. The strict specificity of RVV-V for factor V makes it a useful

diagnostic tool for measuring factor V levels, lupus anticoagulant levels and resistance to

activated protein C . b | Illustrative representation of the thrombin-like Brazilian lancehead

pit viper (Bothrops moojeni) SVSP batroxobin (Defibrase)  bound to fibrinogen.

Thrombin cleaves the Aα and the Bβ chains of fibrinogen and converts factor XIII into factor

XIIIa, which generates crosslinked fibrin, whereas most SVSPs cleave either the Aα or the Bβ

chain only . Batroxobin cleaves only the Aα chain . SVSPs therefore form abnormal,

easily degradable fibrin clots that lead to fibrinogen depletion and hypofibrinogenaemia. The

clotting time in the presence of batroxobin (reptilase time) is used in the clinic to diagnose

several diseases . Batroxobin was modelled from the homologue saxthrombin (PDB ID:

3S69). c | Collinein-1 from the neotropical rattlesnake (Crotalus durissus collilineatus) is the

first example of an SVSP with specific K -channel blocking activity . Through a mechanism

that is independent of its enzyme activity, collinein-1 selectively inhibits the oncogenic

hEAG1 channel (PDB ID:6PBX) among 12 tested voltage-gated K -channels, with obvious

antitumour implications. As K  channels are known targets for many animal neurotoxins, the

discovery of collinein-1 makes it tempting to speculate that some yet unknown SVSP

isoforms might have found a neurotoxic role. Collinein-1 was modelled from the homologue

thrombin-like enzyme AhV_TL-I (PDB ID: 4E7N) and is illustratively bound to the oncogenic

hEAG1 channel.
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SVSPs are monomeric glycoproteins with ~228–239 residues and a molecular mass of

26–67 kDa (refs ). This wide range of molecular masses is due to different patterns

of N-glycosylation and O-glycosylation. The enzymes share the typical trypsin fold

and the highly conserved Ser195–His57–Asp102 catalytic triad (chymotrypsin

numbering) (Fig. 4). Six disulfide bonds stabilize the structures.

Most SVSPs share the classical reaction mechanism of serine proteases. However, >20

SVSPs with variations in the canonical catalytic triad have been found in snake venom

transcripts . Among the few of these that have been characterized, the horned viper

(Vipera ammodytes ammodytes) serine protease VaSP1, which bears the rare Ser195–

Lys57–Asp102 triad, was surprisingly found to be catalytically active , illustrating an

unexpected richness in SVSP chemistry.

In contrast to thrombin, which activates many different coagulation factors (factor V,

factor VIII, factor XI and factor XIII, as well as fibrinogen), each SVSP is highly

substrate-specific . However, as different SVSPs are specific for different sets of

targets, a group of isoforms can induce diverse physiological manifestations. This

recognition diversity is striking given their extensive mutual sequence identity

(50–85%), which is a phenomenon known as the identity–selectivity paradox : their

specificity cannot be understood from the primary sequence. Instead, the specificity

appears to depend on a combination of subtle structural epitopes, primary and

secondary binding sites, enzyme flexibility, glycosylation and water organization .

The precise specificity and intense haemoactivity of SVSPs make them potential

diagnostic and therapeutic tools in the cardiovascular area.

The chemistry of snake venoms is partially understood for the major enzymes, but

further understanding at the atomic level is required. Computer simulations are one

of the best ways to answer remaining questions, particularly given the recent

advances in quantum mechanical and classical mechanics methods, which enable the

reliable prediction and determination of complex chemical reaction

mechanisms .
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Drugs from snake venom toxins

Snake venom finds three major therapeutic applications: pharmaceutical drugs ,

toxin-based diagnostic methods  and biological markers for understanding

human physiology . We focus here on pharmaceutical drugs based on snake venom.

This section discusses the snake venom toxins and toxin-inspired molecules that are

being used to develop new drugs, focusing on the drugs approved by the US Food and

Drug Administration (FDA) and the European Medicines Agency (EMA) as well as

drugs under development in preclinical and clinical trials.

Approved drugs

Snake venoms are typically cytotoxic, neurotoxic and haemotoxic. The anticancer

potential of cytotoxins has long been recognized . Neurotoxins are of interest for

the treatment of neurological diseases. However, no drug derived from a snake

venom neurotoxin has yet reached the market. The complexity of the human

neurological system, our insufficient understanding of this system and the difficulty

in delivering medications to the nervous system contribute to the slow progress of

this line of drug discovery . Nevertheless, the FDA and EMA approved ziconotide, a

ω-conotoxin peptide from the magic cone snail (Conus magus), as an analgesic for

severe chronic pain . The main limitation of this drug is its intrathecal

administration route. In contrast to neurotoxins, haemotoxins have given rise to

numerous drugs approved by the FDA and EMA, in part because they affect a system

whose physiology is well known and easier to manipulate. As cardiovascular diseases

are the leading cause of death globally, the development of snake-venom-derived

drugs that target the cardiovascular system is appealing.

Captopril

The antihypertensive drug captopril was the first drug based on a bioactive

component from snake venom that was approved in the US by the FDA in 1981 and in
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European countries from 1984 onwards. The realization that envenoming by the

South American pit viper jararaca (Bothrops jararaca) caused notable hypotension

led to the discovery of the vasodilator peptide bradykinin in its venom . Subsequent

studies led Sérgio Ferreira and colleagues to discover a set of nine peptides in the

venom of jararaca that potentiated the effect of bradykinin, named bradykinin

potentiating factors (BPFs) . BPFs inhibit the angiotensin-converting enzyme

(ACE) , which otherwise degrades bradykinin. The therapeutic potential of BPFs led

the pharmaceutical company Squibb to develop a drug against hypertension using

BPF peptides (BPP  and BPP , in particular) as templates  (Fig. 5a). The result was

captopril, a small, synthetic, orally bioavailable and potent bioactive molecule with a

structure and electrostatics that mimic the BPP  Pro–Ala–Trp recognition motif for

ACE.

Fig. 5: Approved drugs derived from snake venoms.
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Several drugs derived from snake venoms have been approved by the US Food and Drug

Administration (FDA) and the European Medicines Agency (EMA). The chemical structures of

these drugs are shown, with the region that mimics the snake toxin highlighted in grey. a |

Nine hypotensive bradykinin potentiating peptides (BPPs) were isolated from the venom of

the jararaca viper; they inspired the design of the antihypertensive drugs captopril and

enalapril. These drugs mimic the Trp–Ala–Pro (WAP) motif by which BPP  (top right)

recognizes its target: the angiotensin-converting enzyme (ACE). ACE is shown on the left in a

complex with BPP , another BPP (PDB ID: 6QS1). The ACE Zn  cofactor is shown in orange.
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b | The drug tirofiban was inspired by a disintegrin called echistatin found in the venom of the

saw-scaled viper. Echistatin, shown on the left (PDB ID: 6LSQ), binds specifically to the α β

integrin through its Arg–Gly–Asp (RGD) motif (coloured spheres and top right), which

prevents platelet aggregation. In tirofiban, the piperidine moiety replicates arginine, the

aliphatic linker replicates glycine, and the tyrosine carboxyl group replicates the aspartic acid

carboxylate. The (S)-NHSO nC H  group increases the affinity of tirofiban for its α β  target.

c | Eptifibatide is an antiplatelet drug inspired by the disintegrin babourin purified from the

venom of Barbour’s pygmy rattlesnake. A homology model of babourin (template PDB ID:

1J2L) is shown on the left. Most disintegrins recognize the α β  integrin through the RGD

motif, but babourin uses a Lys–Gly–Asp (KGD) motif (coloured spheres and top right).

Eptifibatide achieves maximum selectivity owing to the fusion of the two motifs into the

unnatural homoRGD motif. Additional peripheral residues and cyclization endow further

molecular recognition capabilities and resistance to proteolysis.

Captopril was a milestone in many ways: it was the first drug developed from animal

venom; it was created by converting toxic action into therapeutic action; it was one of

the first examples and a paradigm of ligand-based drug discovery; and it was the first

drug targeting ACE, rapidly becoming a blockbuster and saving countless lives .

To overcome the side effects of captopril caused by its thiol group, Merck developed

enalapril  (Fig. 5a). The thiol group in captopril was replaced by a carboxylate,

leading to a loss of potency, which was compensated with additional modifications.

The resulting compound (enalaprilat) lacked oral bioavailability, most probably

owing to the ionic carboxylate. Enalaprilat was converted into its ethyl ester to

overcome the problem, giving rise to enalapril, a prodrug with very good oral

bioavailability  and approved by the FDA and EMA. Enalapril became Merck’s first

billion-dollar-selling drug in 1988.

Many ACE-inhibitor drugs based on the BPP  binding motif were subsequently

developed and approved. Examples include lisinopril, quinapril, ramipril,

trandolapril and moexipril , which, despite being frequently dismissed in the
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snake-based drug discovery world, deserve to be considered snake-venom-based

drugs. These drugs are among the most prescribed globally and showcase the

immense therapeutic potential of venoms, which is yet to be fully realized.

Tirofiban

Tirofiban is an antiplatelet drug approved by the FDA in 1998 and the EMA in 1999 for

treating acute coronary syndrome . Its structure is derived from the toxin

echistatin , a 49-residue disintegrin from saw-scaled viper (Echis carinatus) venom.

Echistatin competes with fibrinogen for binding to the α β  integrin, which inhibits

the final step in platelet aggregation . Echistatin thus reinforces the haemorrhagic

activity of saw-scaled viper SVMPs.

Echistatin shares the RGD motif of the disintegrin domains of many P-II-type SVMPs,

which is the minimal sequence for α β  recognition. It binds several integrins with

sub-nanomolar affinity, with selectivity for α β  over others . In high

concentrations, the isolated RGD tripeptide also inhibits platelet aggregation.

Tirofiban was modelled to replicate the RGD motif of echistatin within a small

synthetic molecule . The affinity of tirofiban for α β  was enhanced by the (S)-

NHSO nC H  extension, which interacts with an α β  exosite with which echistatin

does not interact  (Fig. 5b). The affinity and specificity of tirofiban thus surpass

those of echistatin. Tirofiban is another example of the transformation of a venom

toxin into a life-saving drug. It is also one of the first documented successful

pharmacophore-based drug discovery applications .

Eptifibatide

Eptifibatide is another antiplatelet drug approved by the FDA in 1998 and EMA in 1999

that was developed from a disintegrin (barbourin) found in the venom of Barbour’s

pygmy rattlesnake (Sistrurus miliarius barbourin) . Barbourin binds the

α β  integrin through a Lys–Gly–Asp (KGD) motif, rather than the more common but

107,108,109,110

111

IIB 3

92

IIB 3

IIB 3
107

92
IIB 3

2 4 9 IIB 3

112

113

107,108,114,115

IIB 3

Download PDF

https://www.nature.com/articles/s41570-022-00393-7#Fig5
https://www.nature.com/articles/s41570-022-00393-7#Fig5
https://www.nature.com/articles/s41570-022-00393-7#ref-CR107
https://www.nature.com/articles/s41570-022-00393-7#ref-CR107
https://www.nature.com/articles/s41570-022-00393-7#ref-CR108
https://www.nature.com/articles/s41570-022-00393-7#ref-CR108
https://www.nature.com/articles/s41570-022-00393-7#ref-CR109
https://www.nature.com/articles/s41570-022-00393-7#ref-CR109
https://www.nature.com/articles/s41570-022-00393-7#ref-CR110
https://www.nature.com/articles/s41570-022-00393-7#ref-CR110
https://www.nature.com/articles/s41570-022-00393-7#ref-CR111
https://www.nature.com/articles/s41570-022-00393-7#ref-CR111
https://www.nature.com/articles/s41570-022-00393-7#ref-CR92
https://www.nature.com/articles/s41570-022-00393-7#ref-CR92
https://www.nature.com/articles/s41570-022-00393-7#ref-CR107
https://www.nature.com/articles/s41570-022-00393-7#ref-CR107
https://www.nature.com/articles/s41570-022-00393-7#ref-CR92
https://www.nature.com/articles/s41570-022-00393-7#ref-CR92
https://www.nature.com/articles/s41570-022-00393-7#ref-CR112
https://www.nature.com/articles/s41570-022-00393-7#ref-CR112
https://www.nature.com/articles/s41570-022-00393-7#ref-CR113
https://www.nature.com/articles/s41570-022-00393-7#ref-CR113
https://www.nature.com/articles/s41570-022-00393-7#ref-CR107
https://www.nature.com/articles/s41570-022-00393-7#ref-CR107
https://www.nature.com/articles/s41570-022-00393-7#ref-CR108
https://www.nature.com/articles/s41570-022-00393-7#ref-CR108
https://www.nature.com/articles/s41570-022-00393-7#ref-CR114
https://www.nature.com/articles/s41570-022-00393-7#ref-CR114
https://www.nature.com/articles/s41570-022-00393-7#ref-CR115
https://www.nature.com/articles/s41570-022-00393-7#ref-CR115
https://www.nature.com/articles/s41570-022-00393-7.pdf?pdf=button%20sticky
https://www.nature.com/articles/s41570-022-00393-7.pdf?pdf=button%20sticky
https://www.nature.com/articles/s41570-022-00393-7.pdf?pdf=button%20sticky
https://www.nature.com/articles/s41570-022-00393-7.pdf?pdf=button%20sticky
https://www.nature.com/articles/s41570-022-00393-7.pdf?pdf=button%20sticky


less specific RGD motif. The KGD motif provides excellent specificity for the α β

integrin over other integrins .

Residues adjacent to the KGD motif greatly affect the affinity of barbourin. Therefore,

these neighbouring regions were also elucidated during the development of

eptifibatide . The final form of the drug consists of a heptapeptide cyclized

through a disulfide bridge. Cyclization provides superior resistance to

proteolysis . Interestingly, the motif presenting the highest affinity and

specificity for the α β  integrin was neither RGD nor KGD, but a ‘hybrid’ of these,

homoRGD (Fig. 5c). This surprising result indicates that there are limits to the

structural versatility of protein toxins based on a small number of genetically

encoded amino acids. The optimal structural solutions for molecular recognition

might not be achievable through genetically encoded amino acids only, and might

instead require complex and metabolic post-translational modifications that are too

expensive for a secretion that a snake frequently depletes and reproduces. The

versatility of synthetic chemistry presents an advantage that can be exploited to

achieve affinity and specificity beyond what is observed in nature.

In addition to the drugs approved by the FDA and the EMA, other snake venom toxins

have been approved for clinical use in other countries and are described below.

Batroxobin

Batroxobin (Defibrase) is a thrombin-like serine protease purified from the venom of

the Brazilian lancehead pit viper (Bothrops moojeni) that induces

defibrinogenation . This toxin is marketed in China and Japan for the

treatment of acute cerebral infarction, ischaemia caused by vascular occlusive

diseases, and peripheral and microcirculation dysfunctions.

Haemocoagulase
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Haemocoagulase (Reptilase)  is an enzyme system purified from the venom of the

common lancehead pit viper (Bothrops atrox). The enzyme system includes

batroxobin and an SVMP that activates factor X, which results in anti-haemorrhagic

activity. Haemocoagulase is approved for use in Japan, India and South Korea to treat

internal and external haemorrhages.

α-Cobrotoxin

α-Cobrotoxin, which is purified from the venom of the Chinese cobra (Naja

atra) , is a 3FTx α-neurotoxin that binds nicotinic acetylcholine receptors at

the neuromuscular junction. α-Cobrotoxin is approved for use in China as an

analgesic for moderate to severe pain. However, its high bioactivity might lead to side

effects, such as respiratory arrest.

Drugs in preclinical and clinical trials

Several compounds based on components from snake venom are in preclinical and

clinical trials . We focus on selected examples that are among the most

promising and advanced in preclinical or clinical trials.

Anfibatide

Anfibatide is an anticoagulant C-type lectin-like protein purified from the venom of

the sharp-nosed viper (Deinagkistrodon acutus). The protein is heterodimeric,

comprising α-subunits and β-subunits linked by seven disulfide bonds. The

anticoagulant activity of anfibatide is due to its strong binding to human platelet

glycoprotein Ib α-chain (GPIbα), which inhibits the binding of GPIbα with von

Willebrand factor (VWF) and thrombin  (Fig. 6a). The binding of GPIbα and VWF

is key to triggering platelet adhesion and thrombosis, particularly under the high

shear stress conditions at sites of arterial stenosis , which lead to myocardial

infarction and stroke. In addition, anfibatide decreases thrombus volume and
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stability .

Fig. 6: Drugs derived from snake venoms in clinical or preclinical trials.

a | Anfibatide (blue cartoon) is a snake C-type lectin-like protein that is predicted to bind to

platelet glycoprotein Ib α-chain GPIbα (orange surface)  at a site that partially overlaps with
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the GPIbα–von Willebrand factor binding surface (PDB ID: 1SQ0), thus inhibiting the

association of von Willebrand factor and consequently platelet aggregation. Anfibatide is a

promising anticoagulation candidate that has passed phase I clinical trials. b | Crotamine is

an amphipathic and highly basic defensin that penetrates cells and is resistant to

proteolysis. Crotamine exhibits antiproliferative, antinociceptive and analgesic activity in vivo

upon oral administration. Cationic residues are shown as sticks and the disulfide bonds are

shown in yellow. c | Dendroaspis natriuretic peptide (DNP) from the eastern green mamba

(ochre tube with the disulfide bond in yellow) bound to the dimeric particulate guanylyl

cyclase A receptor (shown as a lime surface and a green transparent cartoon) (PDB ID:

7BRI). Cenderitide is a natriuretic peptide chimaera resulting from the fusion of human

C-type natriuretic peptide (CNP) to DNP and co-activates both DNP and CNP transmembrane

receptors. d | The three-finger toxins mambalgin-1 and mambalgin-2 bind to the acid-sensing

ion channels 1a and 1b, locking the channels in the closed state and impairing their function,

with an analgesic effect as potent as that of morphine but with much lower toxicity in

rodents. The complex of mambalgin-1 (green) with the transmembrane (light yellow) acid-

sensing ion channel 1a (violet) is shown (PDB ID: 7CFT). The mambalgins are promising

scaffolds for the development of a new generation of analgesics.

Recombinant anfibatide was produced at a pilot scale in yeast , avoiding issues

relating to quality control and the limited supply of snake venom. Anfibatide might

become the first drug to target GPIbα, which would be a game-changer for

anticoagulant therapy, as anfibatide does not interfere with haemostasis and thus

does not seem to cause the haemorrhages that currently marketed drugs do. So far,

anfibatide has passed phase I clinical trials .

Crotamine

Another toxin with tremendous therapeutic potential is crotamine. This toxin is a

small defensin purified from the venom of some populations of the South American

neotropical rattlesnake (Crotalus durissus) . Although the venom is very toxic,

crotamine has low myotoxicity and neurotoxicity . Crotamine is a very basic (with a
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pI of 10.3 and a charge of +8) amphipathic 42-residue peptide with three disulfide

bridges and structural folds similar to those of human α-defensins and

β-defensins  (Fig. 6b).

Crotamine is a cell-penetrating peptide that is rapidly internalized into almost all cell

types . The primary cytotoxicity mechanism is accumulation in and disruption of

lysosomes . Crotamine has very high selectivity for actively proliferating cells ,

such as cancer cells, making it a promising antitumour agent . Its anti-melanoma

activity was demonstrated in mice  without toxicity to healthy cells and it can even

be administered orally  owing to its excellent resistance to proteolysis and its

cell-penetrating ability.

Among other bioactivities (Table 1), crotamine also exhibits antinociceptive activity

(and is 500 times more potent than morphine (mol mol ))  and anti-inflammatory

activity in in vivo mouse models and upon oral administration  without toxic side

effects. Furthermore, its chemical and recombinant syntheses were recently

reported , which are fundamental steps required for upscaling crotamine

production. Thus, the therapeutic future of crotamine looks promising.

Cenderitide

Cenderitide is a natriuretic peptide based on one purified from the venom of the

eastern green mamba (Dendroaspis angusticeps) and is under clinical trials for the

treatment of heart failure .

Natriuretic peptides are regulators of body fluid volume and induce natriuresis,

diuresis, vasodilation and hypotension, as well as inhibiting fibrosis, among other

bioactivities. Natriuresis and diuresis are essential for the treatment of heart

failure . Three natriuretic peptides (atrial natriuretic peptide (ANP), brain

natriuretic peptide (BNP) and C-type natriuretic peptide (CNP)) are endogenous to

humans. They are small peptides of 28, 32 and 22 (or 53) residues, respectively, with a
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highly conserved 17-residue cyclic structure (Fig. 6c). Natriuretic peptides exert their

effects by activating the particulate guanylyl cyclase (pGC)-A and pGC-B

transmembrane receptors. ANP and BNP activate pGC-A, whereas CNP activates pGC-

B . Recombinant ANP and BNP were approved for use in Japan (1995) and the USA

(2001), respectively, as a therapy for acute decompensated heart failure. However,

later studies suggested that their efficacy is questionable .

Snake venoms are a rich natriuretic peptide source, as hypotension leads to a rapid

loss of consciousness in their prey. One of the first natriuretic peptides discovered in

snake venom was the 38-residue Dendroaspis natriuretic peptide (DNP) from the

venom of the eastern green mamba (Fig. 6c). DNP activates pGC-A and is as potent as

ANP but is more resistant to metabolic ring opening. Cenderitide is a DNP–CNP

chimaera that results from the addition of the 15 C-terminal residues of DNP to the

C-terminal residue of CNP. It was designed to have the ability to co-activate both pGC

receptors. Clinical trials have shown that receptor co-activation gives cenderitide

natriuretic, diuretic and, possibly, anti-fibrotic activities without the undesirable

hypotension effect of ANP and BNP. Cenderitide is safe and well tolerated in people

with stable chronic heart failure .

Mambalgin-1 and mambalgin-2

Mambalgins are 57-residue members of the 3FTx family purified from the venom of

the black mamba that inhibit isoforms 1a and 1b of the acid-sensing ion channels

(ASICs) . ASICs are Na  transporters activated by a decrease in the extracellular

pH . These channels, expressed in nociceptive neurons, have a central role in pain

pathways and other critical pathophysiological processes, such as ischaemic strokes

and tumour growth . Mambalgins inhibit ASIC1a and ASIC1b in the central and

peripheral nervous systems with nanomolar affinity, both in vitro (rat and human)

and in vivo (rat) . In rodents, administration of mambalgins into the

peripheral or central nervous systems strongly abolishes acute and inflammatory

pain , with an analgesic effect as potent as that of morphine but with much
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less tolerance and without the respiratory arrest typical of morphine and toxic side

effects . Thus, mambalgins represent molecular scaffolds for a new generation of

strong, non-toxic analgesics.

Mambalgin-1 and mambagalin-2 have been chemically synthesized and their

structures determined . These mambalgins represent a new family of 3FTx; they

share the core of a typical 3FTx but with short first and third fingers and an elongated

middle finger. The structure of the human ASIC1a channel, both free and bound to

mambalgin-1, was determined in 2020 (ref. ). Experimental and computational

studies  used this structure to refine earlier proposals for the working model of

ASIC inhibition, that is, the locking of the channel in the closed state (Fig. 6d). The

recent wealth of activity and structural data have laid a solid foundation for the

structure-based rational design of mambalgin analogues with favourable delivery

routes.

Toxins targeting SARS-CoV-2 virus

We conclude this section with a review of early-stage in vitro tests of toxins that target

the SARS-CoV-2 virus, which have directed considerable attention to the medicinal

potential of snake venom.

Given the well documented antiviral and antimicrobial activity of snake venom

PLA2s , the activity of eight snake venom PLA2s against SARS-CoV-2 was

tested in Vero cells . The PLA2s were purified from the venoms of the banded krait

(Bungarus fasciatus), the steppe viper (Vipera renardi) and the Nikolsky’s viper

(Vipera nikolskii). The most active was the heterodimeric PLA2 HDP-2 from the

Nikolsky’s viper, which exhibited nanomolar virucidal activity. The phospholipolytic

activity of HDP-2 probably destroyed the viral envelope. HDP-2 also inhibited virus–

host cell fusion. Direct interaction between the catalytically active subunit of HDP-2,

HDP-2P, and the essential cellular ACE2 receptor was confirmed by surface plasmon

resonance. All the tested PLA2s exhibit low cytotoxicity .
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Small peptides derived from the C-terminus of the myotoxin bothropstoxin-I

(KKYRYHLKPFCKK), a PLA2-like protein purified from the venom of the Brazilian pit

viper jararacussu (Bothrops jararacussu), have shown antimicrobial activity against

Gram-positive, Gram-negative and multidrug-resistant bacterial strains . Moreover,

these peptides plus several analogues were tested against SARS-CoV-2 in Vero cells .

Three peptide dimers showed notable activity and selectivity against SARS-CoV-2. In

addition, their cytotoxicity was low. The peptides targeted the viral papain-like

cysteine protease with low, micromolar potency (with a binding affinity of 0.9–7 μM).

Viral papain-like cysteine protease is an attractive SARS-CoV-2 target owing to its

fundamental role in the cleavage and processing of viral polyproteins .

Thus, although these studies are still in their infancy, the use of snake venom to treat

SARS-CoV-2 infection is of increasing interest.

A drug repertoire from snake venom

It is evident that snake venom possesses immense therapeutic potential but that it is

far from being fully exploited. This observation raises questions regarding the

challenges that need to be overcome to transform snake venom into a drug

repertoire.

Identifying drug candidates

Characterizing the toxins in the proteome of each species is fundamental, and this

task has been facilitated by various technological advances. Snakes are the animals

for which this characterization is most advanced, in part owing to a large amount of

venom each individual produces compared with that of smaller animals, such as

scorpions, spiders, centipedes or cone snails, whose peptide-based venoms are also

promising from a therapeutic perspective . However, the chemical structural

diversity found in an animal venom is frequently less vast than that of large chemical
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compound libraries , such as ZINC , which is a widely used and ever-

growing database that contains more than nine hundred million drug-like

compounds. Pharmaceutical companies invest vast sums of capital in maintaining

and expanding massive, private compound libraries. These infrastructures aim to

fulfil a basic need of modern drug discovery: chemical diversity. In other words, if the

goal is to conduct high-throughput ligand screening for a target of interest, it will not

be easy to justify that the use of animal venoms is advantageous over the more

extensive and more diverse traditional chemical libraries.

The advantage of animal venom toxins is their high, specific and inherent bioactivity,

which enables a drug-candidate toxin to be chosen on the basis of a previously

observed bioactivity and not through high-throughput screening. The selection

process has to be rational, not automated. It is easy to glimpse the wealth of diseases

we can eventually treat by looking at the summarized list of bioactivities reported in

Table 1. Nevertheless, this approach implies the need for flexibility in the

pharmaceutical industry, which is currently focusing on automation .

There are two paths for developing drugs from snake venoms: the use of toxins

without modifications or the design of small synthetic compounds that mimic the

recognition motifs of toxins, which are called toxinomimetics.

The use of unmodified snake toxins has not been very successful. Neither the FDA nor

the EMA has approved batroxobin, haemocoagulase or cobrotoxin. However, the FDA

and the EMA have approved unmodified peptide toxins from the venom of other

animals , such as bivalirudin (a toxin from the medicinal leech used to prevent

coagulation during surgery) , ziconotide (a toxin from the magic cone snail used to

treat chronic pain)  and exenatide (a toxin from the Gila monster used to treat type 2

diabetes) .

The use of unmodified toxins as prescription drugs comes at a cost: it hinders their

administration, stability and large-scale production. To circumvent these issues,
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toxinomimecry, a technique that involves complex, rational transformations of the

toxin core, has been successful for deriving drugs from snake venoms, as shown by

the development of captopril and its analogues, as well as the development of

tirofiban and eptifibatide. This path is not always preferable to the use of unmodified

toxins. The preferable path is simply the one that provides more efficient, safer and

cheaper drugs.

Routes of administration

As most toxins are peptides or proteins, their administration is usually problematic.

Despite considerable resistance to proteolysis, owing to the numerous disulfide

bridges within most toxins , oral administration is generally inefficient, in part

owing to difficulties in crossing cell membranes. This issue is evident in the lack of

oral bioavailability of most snake-venom-based drugs . Snake venom toxins are

usually efficient in vivo upon parenteral injection, which is not surprising considering

that they have evolved to be bioactive when injected through the snake’s fangs into

their predators and prey.

Intravenous administration is generally the least invasive administration route that

works, constraining the appeal of toxins for drug discovery. The cost and complexity

of their large-scale synthesis, extraction and purification or heterologous expression

is a further constraint. Toxinomimicry is a possible way to overcome these problems

by using the toxin as a reporter rather than a drug. In this strategy, the role of the

toxin is to reveal the molecular determinants of activity and specificity for the target,

which are then mimicked as extensively as possible with a small synthetic molecule

that is affordable to synthesize and orally bioavailable.

Target identification

The realization of the full power of toxinomimicry requires the resolution of the

structures of toxin–target complexes of interest. Identification of the targets of
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haemotoxins in the well known coagulation cascade has been quite successful ;

conversely, identification of the targets of neurotoxins in the less understood and

more complex human neurological system has proved more challenging . Venom

toxins are probably the best lead sources for drugs directed at ion channels , which

are central targets in modern drug discovery, accounting for almost a fifth of today’s

total drug targets . However, the functions of many of these channels are poorly

understood, if not uncharacterized. Their molecular structures are often unknown

and challenging to determine. The many isoforms of ion channels further complicate

their selective targeting .

If a toxin binds an unknown target, identification of the target is challenging owing to

the technical difficulty of screening target pools. For example, myotoxic PLA2s

possess a region named the ‘pharmacologic site’ that binds a membrane protein

prevalent in the sarcolemma. The binding of PLA2s to such a membrane protein

narrows its biodistribution, focusing its hydrolytic action on muscle tissues .

However, even after many years of study, the identity of the myotoxic PLA2

pharmacologic target is still unknown.

When target identification is successful, determining the target structure and the

target–toxin complex is still challenging. Knowing the 3D structure of the complex is

a requisite to the understanding of molecular recognition, without which the design

of toxinomimetics within a structure-based paradigm is not possible. In this case,

toxinomimicry has to resort to a ligand-based paradigm, supported by

measurements of ligand affinity for toxin mutants, which is less efficient than

structure-based drug design because it is rooted in less molecular information.

Computational chemistry in toxinomimicry

The path forward should entail, at least in part, a much deeper involvement of

computational chemistry. The increase in computational power allows for the more

exact implementation of physical principles, which, together with the greater
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involvement of deep learning and artificial intelligence, is powering advances in

computational fields important for snake-venom-based chemistry and drug

discovery, such as protein homology modelling ; protein–protein

docking ; computational mutagenesis, in particular alanine

scanning ; and the determination of enzymatic

mechanisms . Computational chemistry can thus have a decisive role in

speeding up the process of drug discovery based on snake venom toxins.

Computational chemistry can intervene whenever a toxin with the bioactivity of

interest acts on an unknown target. Today, it is possible to assemble a database of

biological targets for which the molecular structures have been determined by X-ray

or cryogenic electron microscopy and homology modelling and then to screen the

database according to toxin–target affinity. In several cases, the uncertainties

associated with homology modelling  and docking  do not allow for the

identification of a single and robust target. Nevertheless, computational chemistry

reduces the target pool to a set small enough to be feasible for experimental testing.

It is also challenging to determine target–toxin complex geometries with atomic-level

accuracy through computation alone , particularly when modelled structures are

involved. Despite this, computational chemistry can narrow down the target and

toxin regions that contact each other to the point at which experimental mutagenesis

(and other techniques) can be applied to provide the final atomic-level information.

As an example, computational and experimental methodologies were used together

to clarify the mechanism by which mambalgins inhibit ASICs .

In summary, high-level computational chemistry has the power to advance target

identification and target–toxin structural determination if conducted in synergy with

experiments; together they could facilitate either the use of unmodified toxins or the

modelling of toxin-based small ligands. For the latter, traditional medicinal chemistry

can be employed to reduce the toxins into small, synthetic, bioavailable molecules

while keeping most of the determinants for recognition and affinity. This approach
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follows the ‘captopril way’, which was a lesson of success at every level in drug

discovery.

Conclusion

In modern Western civilization, the snake represents deceit and triggers both

fascination and fear. However, ancient civilizations respected the snake owing to the

healing power of its venom. It is becoming evident that the ancients were right, as the

venom of this splendid animal is an extraordinary library of bioactive compounds

that has great medicinal potential.

Our survey of hundreds of studies conducted over the past 15 years reveals the

diversity in the chemical composition of snake venom, which is increasingly being

explored for the development of drugs. Efforts to elucidate the chemical reactivity of

the principal toxins within venom is helping to increase understanding of how toxins

act on their prey targets, and how one can engineer toxin action to achieve a

therapeutic goal. Furthermore, understanding of venom chemistry allows for the

rational design of transition-state small-molecule analogue inhibitors for primary

enzymatic toxins that are today the most promising candidates for replacing the

difficult-to-manage and expensive antibody-based treatments for snakebite

envenoming. The molecular recognition features of snake venom toxins are also

being explored at a molecular level. As we have emphasized, these recognition motifs

can be mimicked by small-molecule drugs directed to the toxin’s targets, which is a

promising approach for developing cheap, stable, easily scalable and orally available

medicines in drug discovery.

The drugs already approved and under development derived from snake venom

demonstrate that toxic bioactivity can be transformed into a therapy for the right

disease. Large toxin molecules can be redesigned and reduced to their recognition

motifs for oral delivery while maintaining affinity and specificity. Of the many drugs in
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preclinical development, mambalgins in particular reflect the contrast between their

therapeutic promise (in this case, to relieve pain) and their origin from one of the

most feared snakes on the planet.

In terms of the future of venom-based drug development, we assert that

toxinomimicry is an exciting alternative and a complement to the use of unmodified

toxins. Furthermore, computational chemistry, which is still underused in the field,

can accelerate the understanding of snake venom chemistry and hence the

development of new drugs. We hope that this Review will inspire a new generation of

scientists to explore and realize the immense potential of snake venoms.
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Supplementary information

Glossary

Neurotoxicity

The ability of a substance to negatively affect the structure or function of the

central or peripheral nervous system.

Haemotoxicity

The ability of a substance to negatively affect the cardiovascular system or

disrupt haemostasis.

Cytotoxicity

The ability of a substance to negatively affect the structure or function of

cells.

Toxins

Toxic compounds produced by a living organism or a virus.

Elapidae

Family of >300 venomous snakes with fixed front fangs. Their venom is often

neurotoxic. This family includes the mambas, cobras, coral snakes and most

Australian snakes, among others.

Supplementary Information

Download PDF

http://www.reptile-database.org/
http://www.reptile-database.org/
https://static-content.springer.com/esm/art%3A10.1038%2Fs41570-022-00393-7/MediaObjects/41570_2022_393_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41570-022-00393-7/MediaObjects/41570_2022_393_MOESM1_ESM.pdf
https://www.nature.com/articles/s41570-022-00393-7.pdf?pdf=button%20sticky
https://www.nature.com/articles/s41570-022-00393-7.pdf?pdf=button%20sticky
https://www.nature.com/articles/s41570-022-00393-7.pdf?pdf=button%20sticky
https://www.nature.com/articles/s41570-022-00393-7.pdf?pdf=button%20sticky
https://www.nature.com/articles/s41570-022-00393-7.pdf?pdf=button%20sticky


Viperidae

Family of >300 venomous heavy-body snakes with long, retractable front

fangs. Their venom is frequently haemotoxic and cytotoxic. This family

includes Old World vipers, rattlesnakes and lanceheads, among others.

Medically important snakes

Snake species that cause notable morbidity and mortality. This classification

depends on the venom toxicity, the frequency of snake–human interactions,

the aggressiveness of the snake and the health-care facilities.

Myotoxicity

Cytotoxicity specifically directed to myocytes (muscle cells).

C-type lectins

Superfamily of >1,000 proteins, most of which bind carbohydrates in a Ca -

dependent manner. The proteins share a C-type lectin-like domain in their

carbohydrate-binding region. In snake venoms, they are haemotoxic.

C-type lectin-like proteins

A protein family whose members feature a domain with the C-type lectin

fold, which lacks critical structural elements to recognize and bind sugars. In

snake venoms, these proteins are haemotoxic.

Sarcolemma

Specialized type of cell plasma membrane that surrounds muscle cells. It is

frequently the target of snake venom myotoxins.

Lysosomes

Membrane-bound organelle containing digestive, hydrolytic enzymes

whose function is primarily the degradation of macromolecules, old cell

parts and microorganisms. Lysosomes represent the waste disposal of a cell.
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Neuromuscular junction

A specialized synapse established between a motor neuron and a muscle

fibre through which signals for muscle contraction are transmitted.

Fibrinogen

A protein complex in the plasma of vertebrates that is enzymatically and

sequentially converted into fibrin and a fibrin-based blood clot. Fibrinogen is

responsible for stopping bleeding from blood vessels.

Intrathecal administration

Invasive drug administration by injection through the skull or the spine,

allowing the drug to reach the cerebrospinal fluid, and thus the brain,

without crossing the blood–brain barrier.

Natriuresis

The process of excretion of sodium in the urine.
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